An Analytic Riemann-hilbert Correspondence for Semi-simple Lie Groups

نویسندگان

  • LAURA SMITHIES
  • JOSEPH L. TAYLOR
چکیده

Geometric Representation Theory for semi-simple Lie groups has two main sheaf theoretic models. Namely, through Beilinson-Bernstein localization theory, Harish-Chandra modules are related to holonomic sheaves of D modules on the flag variety. Then the (algebraic) Riemann-Hilbert correspondence relates these sheaves to constructible sheaves of complex vector spaces. On the other hand, there is a parallel localization theory for globalized Harish-Chandra modules—i.e., modules over the full semi-simple group which are completions of Harish-Chandra modules. In particular, Hecht-Taylor and Smithies have developed a localization theory relating minimal globalizations of Harish-Chandra modules to group equivariant sheaves of D modules on the flag variety. The main purpose of this paper is to develop an analytic Riemann-Hilbert correspondence relating these sheaves to constructible sheaves of complex vector spaces and to discuss the relationship between this “analytic” study of global modules and the preceding “algebraic” study of the underlying Harish-Chandra modules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RIGIDITY AND A RIEMANN-HILBERT CORRESPONDENCE FOR p-ADIC LOCAL SYSTEMS

We construct a functor from the category of p-adic étale local systems on a smooth rigid analytic variety X over a p-adic field to the category of vector bundles with an integrable connection on its “base change to BdR”, which can be regarded as a first step towards the sought-after p-adic Riemann-Hilbert correspondence. As a consequence, we obtain the following rigidity theorem for p-adic loca...

متن کامل

$L_{p;r} $ spaces: Cauchy Singular Integral, Hardy Classes and Riemann-Hilbert Problem in this Framework

In the present work the space  $L_{p;r} $ which is continuously embedded into $L_{p} $  is introduced. The corresponding Hardy spaces of analytic functions are defined as well. Some properties of the functions from these spaces are studied. The analogs of some results in the classical theory of Hardy spaces are proved for the new spaces. It is shown that the Cauchy singular integral operator is...

متن کامل

Moduli of regular holonomic D-modules with normal crossing singularities

This paper solves the global moduli problem for regular holonomic Dmodules with normal crossing singularities on a nonsingular complex projective variety. This is done by introducing a level structure (which gives rise to “pre-D-modules”), and then introducing a notion of (semi-)stability and applying Geometric Invariant Theory to construct a coarse moduli scheme for semistable pre-D-modules. A...

متن کامل

Tree Algebras: an Algebraic Axiomatization of Intertwining Vertex Operators

We describe a completely algebraic axiom system for intertwining operators of vertex algebra modules, using algebraic flat connections, thus formulating the concept of a tree algebra. Using the Riemann-Hilbert correspondence, we further prove that a vertex tensor category in the sense of Huang and Lepowsky gives rise to a tree algebra over C. We also show that the chiral WZW model of a simply c...

متن کامل

The Riemann-Hilbert Problem and Integrable Systems, Volume 50, Number 11

is called Fuchsian if the N ×N coefficient matrix A(λ) is a rational function of λ whose singularities are simple poles. Each Fuchsian system generates, via analytic continuation of its fundamental solution Ψ (λ) along closed curves, a representation of the fundamental group of the punctured Riemann sphere (punctured at the poles of A(λ)) in the group of N ×N invertible matrices. This represent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1974